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ABSTRACT

The stress freezing technique of photoelasticity was utilized to study
the stress intensity variation between full thickness and center slices of
compact tension specimens for various crack lengths. Specimen geometries
covered an a/w range of 0.3 to 0.7 and for values of w/B of 2 and 3.5,

Normalized SIF results for geometries within ASTM E 399-72 specifi- |
cations (i.e. w/B = 2.0, a/w = 0.50) agreed with the ASTM solution to
within experimental error. However, for a/w values outside the ASTM range
(0.45 to 0.55), experimental results were measurably higher than the ASTM
results for w/B = 2.0 and averaged 13% higher for all a/w studied at w/B =
3.5. The center slice SIF was found to be 5 to 10% hiQher than the through

the thickness average on all tests.
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NOMENCLATURE

%33 In plane stress components

K Mode I Stress Intensity Factor (1bs/[in]3/2)

r,0 Polar coordinates (inches, radians)

a Crack length (inches) (see Figure 2)

w, B Specimen width (inches) (See Figure 2), Specimen thickness (Inéhes)
Trax* T Maximum shearing stress in plane perpendicular to crack border (psi)
Kap Apparent stress intensity factor (1bs/[in]3/2)

Krsem Approximate stress intensity factor (1bs/[1n]3/2)

n Fringe order

f Material fringe value (#/in)

t Thickness (inches)
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INTRODUCTION

A substantial effort, both from the point of view of analysis as well
as frgcturg toughness\testing, has been carried out in recent years towards
the development of a universal compact plane strain fracture toughness test
specimen. The analyses have taken the form of boundary collocation [11-[5]
and finite element solutions [4,5,6]. The correlation of the published |
results of fracture toughness testing programs is found in References [3]
and [7] together with tentative test specifications and procedures. In a
discussion in Reference [3], the importance of studying the three-dimensional
effects photoelastically was noted. More specifically, the variation in the
three-dimensional effect upon the stress intensity factor (SIF) with thick-
ness and crack length was found to be virtually unknown. Although photo-
elastic stress éna]ysis has been carried out on geometries similar to the
current compact'tensidn specimen [8], and the SIF has been estimated for
the center slice [9], apparently no study has been directed towards measuring
the three-dimensional effect upon the SIF directly for varying thickness
and crack length. Moreover, except for the analysis of a highly idealized
model [10], analytical studies have been essentially two dimensional. The
present'investigation was undertaken to study this effect thpqg]astica]]y
for a range of compact tension'specimenvchEkm]gngths and thicknesses of
interest to ASTM and agencies utilizing the compact @gg§jggwfg§t in order

to determine the feasibility of extending the specimen ggometrica] ranges

prescribed by ASTM E 399-72.
ANALYTICAL CONSIDERATIONS

Photoelastic studies of crack tip stress fields have been carried out

by a number of investigators [11]-[20]. One of the major difficulties in
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such studies has been the problem of extracting valid SIF values from the
photoelastic data. This problem has received considerable attention
recently by Marloff and his associates [9], Kobayashi and his associates
[21-24], and more recently by the author and his associates [25]-[29].
The author and his associates have developed two methods for extracting
the SIF which have been used in a wide variety of problems. One of
these methods, called the Taylor Series Correction Method (TSCM),will
be employed in the present study. The philosophy and use of the method
are described in the sequel.

It is well known that the elastic stresses near a crack tip in a

plane normal to the crack border take a familiar singular form which may

be written as:
0.4 = 175 F1:(8) 1,3 = x.y (1)

where KI is the stress intensity factor and r,6 are measured from the
crack tip as shown in Figure 1. Since 043 involve singular terms, then

the maximum in plane shearing stress:

1/2
2] 2 2 | .
Tmax ~ 5{(°yy " Oy ¥ 4Txy} (2)

will also involve singular stresses. The authors have shown [25] that
the blunted zone created by stress freezing photoelasticity near a crack
tip creates a nonlinear zone very near the crack tip, but this zone is
very Tlocal and Tight reflections from the crack tip ordinari]j preclude
measurements this close to the crack tip. On the other hand, there is
no way to determine precisely how far away from the crack tip one can be
before nonsingular terms in the stress description begin to contribute

appreciably to the photoelastically measured T Since fringe Toops

ax’
around a crack tip tend to spread furthest along a line approximately in




a direction normal to the crack surfaces and passing through the crack

tip, data are always taken along this 1ine, reducing Tax to the form:

(r) (3)

Tmax - Tmax

In order to account for boundaries other than crack surfaces themselves,

TSCM expresses Trax in the form:

LU (4)
max r1/2 N=0 N
A computer program has been written to receive input data in the form of
Toax® " from the photoelastic data,and to compute A, BN from the data
using a least squares procedure beginning with only the first tem (i.e., A)
then A, B

thenA, By, B;, etc. recomputing A each time until the Mth

0’ 0’

term contributes an amount to t ax less than the estimated experimental

m
error. In this region, Eq. (4) is truncated and A = KI/(Sw)](z‘is determined.
There is no specific truncation criterion and some judgement on the part
of the investigator is required here. The convergence of the program is
verified in reference [27].

For two-dimensional problems, the method correspaonds to the applica-
tion of the Williams Stress Function along 6 = 7w/2. DetaiIs of the pro-

gram are found in Reference [27].
THE EXPERIMENTS

A éet of photoelastic experiments was designed to study the influence
of crack length upon the stress intensity factor for two thicknesses and
the three-dimensional effects thereof. The basic geometry of the test
specimens is given in Figure 2 and the dimensions are found in Table I.

The use of the 30° notch to simulate the crack tip stress field was sug-
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gested by the result of investigations in Ref. [30] and was verified by
comparing pilot test results with Wilson's boundary collocation solution.
Pilot tests revealed that, due to the very Tow threshold value of KIC for
the model material above critical temperature, 1live loads were restricted
to very small values and a counterweight was necessary in order to main-
tain Mode I Toading on the crack t{p. The force system consisting of the
dead weight of the lower half of the specimen, the counterweight, and the
added pin reaction served to intensify K;. Moreover, the use of full size
pins above critical temperature produced erratic results due to variations
in the contact surface and frictional effects as the soft material deformed
around the pins. In order to alleviate the several difficulties described
above, the authors used pins which were approximately one half the hole
size for the stress freezing tests and were able to obtain consistent re-
sults. Furthermore, the value of KI was established from through the
thickness room temperature fringe patterns for each test (using full size
pins and much Targer loads than those at stress freezing temperatures)

and the thickness effect was obtained by stress freezing in a subsequent
test on the same specimen. This approach implies that the auxiliary
Joading system consisting of the weight of the lower half of the specimen,'
the counterweight, and additional pin forces has no influence upon the
variation in KI through the specimen thickness. Pilot tests using only
the auxiliary load system with the A-3 geometry support this assumption.

Model manufacture - A1l models were made from PLM-4B or Hysol 4290 stress

and maintaining ASTM tolerances throughout. A11 cracks were made with

circular saws.




Test procedure - After inspection in the polariscope to insure stress-free

specimens, the specimens were loaded at room temperature through full size
pins in a dead weight system and through-the-thickness fringe photographs
were obtained. Specimens were then counterweighted, hung in the oven and
heated slowly to critical temperature (275°F or 300°F). After a thermal
soak of about 10 hours, the live 16ad was applied as a dead weight through
the lower pin and cooling at a rate of about 2°/hr. was carried out under
full load. Upon cooling, the specimen was placed in a tank of oil of the
same index of refraction as the model material, and full scale and local
fringe photographs were made. A full scale fringe photo through the
thickness is shown in Figure 3. Next, a center slice about 0.10 in. thick
was removed perpendicular to the crack border, and the fringe photography
was repeated utilizing a partial mirror fringe multiplication system. All
Tocal fringe shots were made through a telescopic lens producing working

prints of about 15 to 20X. A typical slice photo is shown in Figure 4.




RESULTS

A typical set of raw fringe data from the stress freezing tests is
shown in Figure 5 together with the curves fitted by TSCM. Data scatter
is small and the curves fitted by TSCM fit the data well. In order to
obtain a more sensitive assessment of data scatter and to illustrate how
TSCM is used to obtain the SIF by extrapolation, the data of Figure 5 are'
replotted in Figure 6. Here the ordinate is the apparent SIF normalized
with respect to the through the thickness value at the stress freezing
temperature. In this case, the center slice SIF exceeded the through the
thickness value by about 7%. As can be seen from Table I, for the Type
A specimens with w/B = 2.0, this figure was 10% for ali crack lengths be-
tween a/w = 0.5 and 0.7. However, for the type B'specimens with w/B = 3.5,
the excess of the center slice SIF over the through the thickness value
varied from 5% for a/w = 0.5 to 10% for a/w = 0.7. Since experimental
error, on occasion,can accrue to as much as 5%, the authors do not feel
that the crack length effect, noted here,is particularly significant.

A comparison of the room temperature test results with the ASTM E 399-72
equation is found in Figure 7. Because of the high sensitivity of the Type
A test§ to the load alignment, two test specimens were tested independently
at each value of a/w in order to insure more reliable SIF values and each
point on the w/B = 2.0 curve represents the average of two tests. For
w/B = 3.5, pilot studies showed that one test was sufficient.

Results of the study may be summarized as follows:

i) For w/B = 2.0 and a/w = 0.50, experimentally determined normalized
SIF values were only 2% higher than the ASTM E 399-72 values. In view of a

possible 5% experimental error, this difference is judged to be negligible.
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ii) Normalized SIF values over the a/w range of 0.3 to 0.7 for
w/B = 2.0 averaged 5% higher than the ASTM E 399-72 result and, for w/B =
3.5, averaged 13% higher than the ASTM E 399-72 result.
iii) Center slice normalized SIF values were 5 to 10% higher than
through the thickness average values for both w/B = 2.0 and w/B = 3.5
(See Table I). |

DISCUSSION

The>existing ASTM E 399-72 solution is supported by a very accurate
boundary collocation solution of an idealized compact tension specimen
geometry which has been verified by comp1iancé measurements by Wilson [5]
and his associates, by K calibration studies by Srawley and Brown and their
associates(unpublished) and by a recent finite element solution by Wilson
and his associates [31] where he used Tinear strain elements in conjunction
with a J Integral SIF determination. Quite recently, using a different
abproach, Newman [32] has used a boundary collocation solution to study
effects of the pin holes for various a/w which generally agrees with the
other two dimensional results.

The results cited in this study indicate that the ASTM E 399-72 result
is quite accurate for w/B = 2.0 and a/w = 0.50. However, when the crack
Tengths are varied outside the ASTM allowable range of a/w = 0.45 to 0.55,
higher values of normalized SIF result for w/B = 2.0 and st111'higher values
result for w/B = 3.5. This suggests that if ASTM specimen geometry re-
strictions are to be relaxed, then additional analyses including three

dimensional effects may be‘necessary to account for results observed here.




The above discussion is based solely upon Tinear elastic fracture
mechanics since plasticity effects were not present in either the analytical
or experimental models discussed here. In fracture toughness tests, how-
ever, plasticity is present and may exert a significant influence upon the
test results if the models are not thick enough. Moreover, there is the
question of the variation of constfaint through the thickness in the
thinner models and, in fact, whether or not plane strain predominates.

Due to these complicating factors, the authors do not recommend prediction

of fracture toughness results from their tests.

SUMMARY

A set of photoelastic experiments was conducted in order to study
the influence of crack length and thickness upon the SIF for compact
tension specimens within a crack length range a/w of 0.3 to 0.7 and for
two thicknesses w/B = 2.0 and w/B = 3.5.
| The experiments confirmed the validity of the ASTM E 399-72 solution within
its Timits, i.e. (w/B = 2, a/w = 0.45 to 0.55) but showed measurable increases
in the normalized SIF for larger values of a/w and w/B. A variation in the
SIF through the specimen thickness was also identified.

The authors estimate their results to be accurate to within about 5%
for linear elastic fracture mechanics comparisons. Moreover, the differences
in the SIF values for the two values of w/B were only about 8%. Even though
the latter difference was established from avérégé values of some dozen or
more tests in each series, the authors recommend that further tests be con-
ducted, particularly at values of w/B of 1.0 and 6.0, in order to determine
if the trends observed here extend into those ranges as well as to further

substantiate the present results.
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